## **Annual Drinking Water Quality Report Town of Clinton Water Department** For the Year 2007, Results from the Year 2006 We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is ten wells. Two wells draw groundwater from the Brunswick-Shale Aquifer Formation, three wells draw from the Kittatinny Limestone Aquifer Formation, one from the Martinsburg Shale Aquifer Formation, and the other two draw from Precambrian and other conglomerate type aquifer systems. The Source Water Assessment Report and Summary for this public water system is available at www.state.nj.us/dep/swap or by contacting the NJDEP, Bureau of Safe Drinking Water 609-292-5550. The source water assessment performed on our 10 sources determined the following: The table below illustrates the susceptibility ratings for the seven contaminant categories (and radon) for each source in the system. The table provides the number of wells and intakes that rated high (H), medium (M), or low (L) for each contaminant category. For susceptibility ratings of purchased water, refer to the specific water system's source water assessment report. The seven contaminant categories are defined at the bottom of this page. DEP considered all surface water highly susceptible to pathogens, therefore all intakes received a high rating for the pathogen category. For the purpose of Source Water Assessment Program, radionuclides are more of a concern for ground water than surface water. As a result, surface water intakes' susceptibility to radionuclides was not determined and they all received a low rating. If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of the assessments, DEP may customize (change existing) monitoring schedules based on the susceptibility ratings. | | Pathogens | | | Nutrients | | | Pesticides | | | Volatile<br>Organic<br>Compounds | | Inorganics | | Radio-<br>nuclides | | Radon | | Disinfection Byproduct Precursors | | | | | | | |---------------------------------|-----------|---|---|-----------|---|---|------------|---|---|----------------------------------|---|------------|---|--------------------|---|-------|---|-----------------------------------|---|---|---|---|---|---| | Sources | Н | М | L | Н | М | L | Н | М | L | Н | М | L | Н | М | L | Н | М | L | Н | М | L | Н | М | L | | Wells - 9 | | 9 | | 9 | | | | 6 | 3 | 7 | | 2 | 3 | 6 | | 5 | 4 | | 9 | | | 2 | 7 | | | GUDI - 0 | | | | | | | | | | | | | | | | | | | | | | | | | | Surface<br>water - 0<br>intakes | | | | | | | | | | | | | | | | | | | | | | | | | Pathogens: Disease-causing organisms such as bacteria and viruses. Common sources are animal and human fecal wastes. **Nutrients:** Compounds, minerals and elements that aid growth, that are both naturally occurring and man-made. Examples include nitrogen and phosphorus. Volatile Organic Compounds: Man-made chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride. **Pesticides:** Man-made chemicals used to control pests, weeds and fungus. Common sources include land application and manufacturing centers of pesticides. Examples include herbicides such as atrazine, and insecticides such as chlordane. **Inorganics:** Mineral-based compounds that are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate. Radionuclides: Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium. Radon: Colorless, odorless, cancer-causing gas that occurs naturally in the environment. **Disinfection Byproduct Precursors:** A common source is naturally occurring organic matter in surface water. Disinfection byproducts are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (for example leaves) present in surface water. We are pleased to report that our drinking water meets all federal and state safety requirements. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791). | | | TES | T RESULTS | <b>S</b> | | | | | |------------------------------------------------|-----------------------|----------------------------------------------------------|-----------------------------|--------------|----------------|-----------------------------------------------------------------------------------------------------------------|--|--| | Contaminant | Viola-<br>tion<br>Y/N | Level<br>Detected | Units of<br>Measure<br>ment | MC<br>LG | MCL | Likely Source of<br>Contamination | | | | Radioactive Contamin | ants | | | | | | | | | Alpha emitters<br>Test results Yr. 2001 | No | 1.7 | pCi/1 | 0 | 15 | Erosion of natural deposits | | | | Inorganic Contaminar | nts: | | | | | | | | | Arsenic<br>Test results Yr 2006 | No | Range = ND - 8.97<br>Highest level<br>detected = 8.97 | ppb | n/a | 5 | Erosion of natural deposits;<br>runoff from orchards; runoff<br>from glass and electronics<br>production wastes | | | | Barium No<br>Test results Yr. 2006 | | Range = 0.06- 0.36<br>Highest level<br>detected = 0.36 | ppm | 2 | 2 | Discharge of drilling wastes;<br>discharge from metal refineries;<br>erosion of natural deposits | | | | Copper<br>Test results Yr. 2005 | No | 0.82<br>No samples exceeded<br>the action level | ppm | 1.3 | AL=1.3 | Corrosion of household<br>plumbing systems; erosion of<br>natural deposits | | | | Lead<br>Test results Yr. 2005 | No | 13.3<br>No samples exceeded<br>the action level | ppb | 0 | AL=15 | Corrosion of household<br>plumbing systems, erosion of<br>natural deposits | | | | Nitrate (as Nitrogen)<br>Test results Yr. 2006 | No | Range = 1.6 - 3.5<br>Highest level<br>detected = 3.5 | ppm | 10 | 10 | Runoff from fertilizer use;<br>leaching from septic tanks,<br>sewage; erosion of natural<br>deposits | | | | Disinfection By-products | S | | | | | | | | | TTHM (Total<br>trihalomethanes) | No | Range = ND - 17<br>Highest Annual<br>Average =17 | ppb | N/A | 80 | By-product of drinking water disinfection | | | | Haloacetic Acids Five | No | Range = ND - 2<br>Highest Annual<br>Average = 2 | ppb | N/A | 5 | | | | | <b>Disinfection Residuals</b> | | | | _ | | | | | | Disinfectant Residuals<br>(Chlorine) | No | Range = $0.3 - 0.6$<br>Highest annual<br>Average = $0.4$ | ppm | 4ppm<br>MRDL | 4 ppm<br>MRDLG | Maximum disinfectant<br>(Chlorine residual level) | | | The Clinton Water Department routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1<sup>st</sup> to December 31<sup>st</sup>2006. The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. If you have any questions about this report or concerning your water utility, please call 908-735-2265. We want our valued customers to be informed about their drinking water. If you want to learn more, please attend any of our regularly scheduled Council meetings at the Town of Clinton Municipal Building, 43 Leigh Street. Meetings are held on the second and fourth Tuesdays of each month at 7:30 p.m. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can, also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791. The Safe Drinking Water Act regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos, volatile organic chemicals and synthetic organic chemicals. Our system received monitoring waivers for all of these types of contaminants. The maximum contaminant level (MCL) for arsenic in 2005 was 50 ppb. Our water system was in compliance with the MCL in 2005. Our water system will be required to conduct additional actions to come into compliance with the new arsenic MCL of 5 ppb which will be effective in 2006. You should be aware that some people who drink water containing arsenic in excess of the new MCL of 5 ppb over many years could experience skin damage or problems with their circulatory system, and may have an increased risk of getting cancer. ## **DEFINITIONS** In the table on the first page you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions: Non-Detects (ND) - laboratory analysis indicates that the constituent is not present. <u>Parts per million</u> (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000. <u>Parts per billion</u> (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. <u>Picocuries per liter</u> (pCi/L) - picocuries per liter is a measure of the radioactivity in water. <u>Action Level</u> - the concentration of a contaminant, which if exceeded, triggers treatment or other requirements which a water system must follow. <u>Maximum Contaminant Level</u> - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. <u>Maximum Contaminant Level Goal</u> -The "Goal"(MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. <u>Maximum Residual Disinfectant Level (MRDL)</u> - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. <u>Maximum Residual Disinfectant Goal (MRDLG)</u> - The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination We constantly monitor the water supply for various contaminants. We have detected radon in the finished water supply in 7 out of 8 samples tested. There is no federal regulation for radon levels in drinking water. Exposure to air transmitted radon over a long period of time may cause adverse health effects. We at **Clinton Water Department** work hard to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future. Please call our office if you have questions.